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Replacement of Ti4+ in TiOZ by Fe”’ or Ga )+ gives a limited range of solid solutions with anion-deficient 
rutile structure. Anion deficiency is accommodated by eliminating a sheet of O*- sites by a new type of 
planar boundary, on <210) (rutile), with the extinction characteristics of an DL boundary and apparent 
displacement vector j[O,l,O]. Structural considerations suggest, however, that this is neither a true 01 
boundary nor a crystallographic shear plane as hitherto defined. In Fe203-Ti02 solid solutions, rutile 
with isolated (210) boundaries coexists with Fe2Ti05. In Ga203-TiO*, parallel recurrent [210] boundaries 
generate a new homologous series of phases Ga4Tin-402n-2 (15 < n < 23, n odd) which were characterized 
in an imperfectly ordered state by electron diffraction and direct lattice imaging. 

Changes in the anion:cation ratio of ionic 
crystals can be brought about not only by 
stoichiometric variability (e.g. through partial 
reduction) but also by solid solution, through 
incorporation of cations with similar ionic 
radius but different ionic charge from the cations 
of the host structure. In this paper we discuss the 
structural consequences of introducing M3’ 
cations into the rutile structure of TiOz. 

Rutile-based structures have latterly been 
intensively studied in order to elucidate the 
principles of crystallographic shear, which is 
basically a means of accommodating a change in 
the anion : cation ratio without gross structural 
change, localized defects or change of cation 
coordination. Electron microscopy has proved 
to be a powerful means of recognizing and 
interpreting the resultant derivative structures, 
with their large unit cells, and of determining 
the imperfection of their internal order. It has, 
moreover, revealed that the binary oxides, at 
least, can eliminate localized defects even for 
very small deviations from the ideal composition. 
In very slightly substoichiometric TiOz and WO, 
the deficit of oxygen is largely accounted for by 
the formation of isolated crystallographic shear 

* Part I : J. Solid State C&m. 4, 379 (1972). 

planes as two-dimensional planar faults (‘Wads- 
ley defects’). 

It is now familiar that, in the binary Ti-0 
system, there are two homologous series of 
oxides Ti,Oz,-, : those with 4 < n < 10 based on 
recurrent shear on the {lzl} rutile plane (1-7) 
and a second series, revealed only by electron 
microscopy, in the composition range Ti0,.9j, 
to Ti01.975, ca. 16<n<ca. 40, with (132) 
crystallographic shear planes (5,6,8,9). Random 
Wadsley defects on all (192) orientations are 
already present at compositions around Ti0,,999. 
These are all mixed valence phases, based formally 
on Ti3+ and Ti4+ cations, and it might be surmised 
that delocalization of electrons, between crystal- 
lographically equivalent cations in different 
charge states, played some part in crystallo- 
graphic shear. Although this would facilitate the 
ordering of cations of different valence states, it 
is clear that facile electron transfer is not essential, 
since a series of (121) crystallographic shear 
phases Cr2TinP20Zn-i (n > 6) was identified by 
X-ray diffraction methods in the Crz03-TiOz 
system (3, 10); electron microscopy has shown 
that this series extends to n = 11 (II). With 
decrease in the chromium concentration (i. e., 
decreasing anion deficit), there is no single change 
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over to a homologous series based on { 132) 
shear; instead, the orientation of the crystallo- 
graphic shear plane changes progressively and 
sweeps through a continuous range of {I&Z} 
values in the [lil] zone, between (lzl} and 
{ 132) (II, 12). Still closer to the rutile composition 
(from about M0,,99 to MOz.oo, where M = 
Cr + Ti) there is a solid solution phase in which 
no {I 52) boundaries or other Wadsley defects 
have been found. The conclusion that these are 
anion-deficient structures, with random localized 
defects or defect clusters, seems inescapable. 

Thus, although other M3+ cations can replace 
Ti3+ in rutile-based structures, they may modify 
the way in which the oxygen deficiency is accom- 
modated. It was therefore of interest to replace 
Cr3+ by other suitable cations, as controllers of 
the overall stoichiometry, in order to identify the 
factors that determine the structures assumed in 
Ti02 + M0,,5 systems. The cations studied 
should preferably have no ambiguity about their 
valence state in the as-prepared oxides. They 
must have ionic radii close to that of Ti3+; small 
differences in packing radius could have signi- 
ficant effects on the coulombic and repulsive 
terms of the lattice energy and, more particularly, 
on the local relaxation and distortion of the 
crystal structures around the trivalent cations. 
The electronic configuration of the cations may 
be important; there is a significant component of 
covalent binding in the rutile structure and it has 
been suggested that direct d-d interactions could 
operate between cations in the shear plane where 
face sharing between coordination octahedra 
leads to short metal-metal atomic distances. The 
d character and radial extension of the d orbitals 
could therefore be variables influencing the 
behaviour of ternary oxide systems. 

We have accordingly examined a number of 
systems and report here in some detail our 
observations on Ga0,.5-Ti02 and FeO,.,-TiO,. 
We find that these introduce a new variant in the 
extended defects possible for the rutile structure. 
Ga3’ and Fe)+ are similar in ionic radius to Cr3+ 
and Ti4-+ (Ga3’ 0.062 nm, Fe3+ 0.064 nm, Cr3’ 
0.063 nm, Ti4+ 0.068 nm) and smaller than Ti3+- 
(0.076 nm). All these trivalent cations form 
corundum-type oxides. 

The gallium oxide-titanium oxide phase 
system has not been studied in detail. Lejus et al. 
(13) studied the phase GazTiO, (pseudobrookite 
structure) and found that it was unstable below 
1570”K, decomposing to form an unidentified 
phase X and Gaz03. Below 1370°K only TiOz 
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FIG. 1. Ti02-Ga203 phase system after Lejus et al. 
(13). 

and Ga203 were found. They obtained rough 
values for the limits of phase X (Fig. 1) which 
they show to have a eutectoid. No further work 
has since been carried out on this phase X and 
until now the nature of this phase was not known. 

The iron oxide-titanium oxide phase system is 
better documented. Karkhanavala and Momin 
(14) have determined the phase diagram by X-ray 
methods and found only one intermediate phase, 
pseudobrookite FezTiOS, which appears to be 
stable at all temperatures up to its melting point. 
No intermediate phases were detected at the 
high-titanium end of the system. The solid 
solubility of Fez03 in rutile has also been deter- 
mined and has a value of 2.5 mole% Fe0,.5 at 
1470°K (2.5). 

Experimental 

Several sample compositions in the TiO,- 
Ga203 and Ti02-Fe203 systems were prepared 
with compositions between 2.0 and 32.0 at. % 
MO,.*. All samples were prepared directly from 
“Specpure” oxides by a solid state reaction in air 
at 1570°K. The reagents were mixed, finely 
powdered and pressed into a pellet before the 
annealing process. The pellet was laid on a thin 
sheet of platinum in an alumina boat to prevent 
contamination. All samples were annealed for 
14 days. 

X-Ray powder diffraction patterns were taken 
from each sample using a Guinier-Hagg camera 
to identify the products. 

The quenched samples were microcrystalline 
and ranged in colour from pale brown for those 
low in dopant, to white for those with high 
gallium content. The samples were prepared for 
microscopy by crushing between glass slides and 
depositing the fragments on carbon-coated grids. 
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The electron microscopy was carried out with 
a JEM 6A fitted with a stage giving a tilt of 
=t20” and a specimen rotation of 360”, and with 
a JEM 1OOU fitted with a small angle tilting stage 
of &lo” in any direction. The JEM 1OOU could 
also be used for high resolution dark field 
microscopy by using the electrostatic beam 
deflectors; this was the preferred procedure for 
lattice imaging. 

Results 

2 mole% LI~O,.~. At this composition the 
gallium and the iron doped systems gave identical 
results by electron microscopy. X-Ray powder 
diffraction patterns showed only rutile reflections 
and this composition therefore falls within a 
rutile solid solution range for both systems. 

Transmission electron microscopy revealed 
large numbers of planar boundaries on more 
than one crystallographic orientation. In general, 
these boundaries terminated only at the edge of 
the crystal, but some were observed to terminate 
within the fragment, either on meeting another 
fault or at a dislocation. 

By carefully tilting the specimen to bring the 
plane of the boundary parallel to the electron 
beam it was seen that they lay along the (210) 
rutile. The electron diffraction pattern was 
streaked perpendicular to the fault. Figure 2 

shows planar boundaries along all four possible 
(210) boundaries, in dark field, the beam having 
been tilted slightly away from the optimum 
positions in order to bring out the contrast of the 
boundaries. The angles between the boundaries 
agree with those computed for the angles between 
rutile (210) planes. 

Close observation of the fringes shows that 
fringe contrast is symmetrical both in bright 
field and in dark field. The boundaries are 
therefore of 7~ type, with the characteristics of c( 
boundaries (as defined by van Landuyt et al.) 
across which the structure is displaced by a 
vector R. The fringe contrast was analysed using 
bright field and dark field microscopy under 
two-beam conditions, and fringe profiles were 
computed for different values of a, crystal 
thickness, extinction distance and the excitation 
error S. The observed and computed profiles 
were compared in order to obtain the best fit, 
and a value of a could thereby be assigned to 
each fringe pattern. The displacement vector R 
could then be obtained from a number of these 
assignments, through the relation 

a = 2z-g-R 

where g is the reciprocal lattice vector of the 
excited reflection. 

It has been found that the Ga@-TiOz and 
FezOj-TiOz systems are only two of several 

FIG. 2. An 001 section showing isolated boundaries of all four possible 1210) orientations in TiO, 2% FeO,.,. 
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ternary rutile-based systems that present (210) 
boundaries, and the analysis of the fault will be 
more fully discussed elsewhere, in relation to a 
wider range of evidence. For present purposes, 
the observations can be summarized : 

(1) For the 200, 020 and 002 reflections, 
fringe contrast was zero, or close to zero; 

(2) No boundary was seen in contrast for both 
the 101 and 011 type reflections; 

(3) A boundary in contrast for hkl is out of 
contrast for 2h, 2k, 21; 

(4) 111 type reflections always gave 7r-type 
contrast. This critical observation is shown 
in Fig. 3 and confirmed by the zero contrast 
observed at two overlapping faults at A. 
The total phase change for overlapping 
faults is assumed to be twice that for a 
single fault where the interfault distance is 
small; thus at A the expected contrast would 
be for a = 27r, consistent with the observa- 
tion. Figure 4 shows contrast at two faults 
for differing diffracting conditions. 

More strictly considered, the out of contrast 
condition did not correspond to exactly zero 
fringe contrast. It is clear that the condition 
tc = 2n7 can be attained only if R is a perfect 

lattice vector; in practice, any collapse process 
that rearranges the linkages of the [MO,] 
coordination polyhedra is likely to involve a 
certain measure of distortion, with the con- 
sequence that R may differ to some extent from 
the ideal value. Thus, in their careful analysis of 
{ 132) boundaries in oxygen-deficient rutile, 
Bursill and Hyde found that fringe contrast was 
best accounted for on the basis that R is about 
0.90 times a perfect lattice vector. Comparison 
of their published out-of-contrast fringe images 
with those obtained by us suggests that R for 
(210) boundaries is rather closer to, but not 
exactly, a perfect lattice vector. 

In Table I, the observed contrast under two- 
beam conditions is compared with that predicted 
for a boundaries with several different displace- 
ment vectors. It is apparent that the only values 
of R consistent with the observed contrast are 
$[O,l,O] and +[O,-l,O]. Since a displacement 
vector +[O,-l,O] would represent an expansive 
displacement, i.e., an increase in the oxygen: 
metal ratio, it is ruled out by the chemistry of 
the system. The first three displacement vectors 
in Table I are those that might be predicted on 
purely crystallographic grounds as compatible 
with a true a boundary. 3[121] corresponds to a 

FIG. 3. ST contrast for planar boundaries in dark field using the 111 reflection. Note the zero contrast at the two 
overlapping faults at A. 
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FIG. 4a. 

stacking fault with no nett change in oxygen: displacement vector +[lOl] (as in the known 
metal ratio. +[Ol I] is a collapsing shear displace- (211) rutile shear) is less likely, since, operating 
ment, in harmony with the reduction in oxygen: on (210}, it would lead to three face-sharing 
metal ratio. A crystallographic shear with octahedra along the [OlO] direction. However, 

FIG. 4b. 
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FIG. 4c. 

all these displacements with a component along c R = +(O,b,O> operating on (210) creates a 
are eliminated by the observed n contrast for problem, however. A lattice vector +[OlO] would 
g= 111. bring titanium atoms into a set of octahedral sites, 

The conclusion that the displacement vector is but it does not bring the oxygen sites of the rutile 

FIG. 4d. 



218 GIBB AND ANDERSON 

FIG. 4e. 

FIG. 4. Dark field images of faults on the (210) and (120) planes using (a) 110, (b) 101, (c) Oli, (d) 12i and (3) 002 
reflections. 

structure into coincidence; only the displacement 
vectors with a component &c do this. To trans- 
late unaltered rutile structure, across the boun- 
dary, by $[O,b,O]-as is required for a true a 
boundary-would involve a complete rearrange- 
ment of oxygen positions and reconstruction of 
coordination octahedra in the boundary itself. 
On purely structural grounds it can be argued 
that displacement of the titanium atoms alone 
by +[O,b,O], within an unchanged oxygen sub- 
lattice, would give a rational structure at the 
boundary. However, the relation between the 
two blocks of rutile separated by the (210) 

TABLE I 

PREDICTED CONTRASTS FOR POSSIBLE DESPLACEMENT 

VECTORS UNDER GIVEN REFLECTIONS COMPARED WITH 

THOSE OBSERVED 

l? 110 101 OlT 121 2Tl 002 200 111 

3[1211 377 257 n 4x 7l 25r 2a 477 
wO11 77 77 0 ?T 0 277 2%. 257 

~[1011 77 277 -77 0 377 27I 2a 277 

!zro101 77 0 7T 2n -77 0 0 77 
obs +r O7rOnOO~ 

interface would not then be defined by a simple 
translation ; the boundary would not be strictly 
defined as an a boundary and it is not clear 
whether the contrast properties, and the in- 
ferences to be drawn from them, would be as 
set out above. We have, however, adopted this 
working hypothesis in a tentative way in dis- 
cussing the homologous series of compounds in 
the Gaz03-TiOz system (below). In our view, 
the structure of the (210) boundaries can be 
properly resolved only by a crystal structure 
determination of one of these phases. 

2.0-32.0 at. % FeO,.,. For samples made up 
with iron content in excess of the rutile solid 
solution limit, the X-ray powder diffraction 
patterns gave two sets of lines, all of which 
could be indexed on the basis of either rutile or 
pseudobrookite (FezTiOS). No extra lines were 
observed. 

These two phases were also observed by 
electron diffraction. Electron diffraction contrast 
also showed fragments of rutile containing large 
numbers of (210) faults. The existence of a two 
phase region containing rutile solid and Fe2Ti0,, 
as observed by X-ray analysis in this composition 
range, is thus confirmed by electron diffraction. 
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2.0-32.0 at. % Ga0,.5. X-Ray diffraction 
patterns of samples in this composition range 
each contained a large number of lines. A few of 
the lines could be indexed on the basis of rutile. 

By electron diffraction, single crystal fragments 
gave rutile reciprocal lattice sections but in many 
cases they contained superlattice spots. The 
shortest reciprocal lattice spacings were found 
along the (210) direction, often as heavy streaking 
or as several superimposed arrays. Bright and 
dark field imaging showed large variations in 
fringe spacing (Fig. 5). 

At higher gallium contents it was possible to 
observe diffraction patterns with just one or 
two different superlattice spacings. Direct lattice 
imaging showed that the fringes were well ordered 
over short distances but anomalies in spacing 
were still frequent (Fig. 6). 

The superlattice spots always appeared to 
intersect the [210] direction by an integral number 
of times, defined below as n = (m - 1)/2. Table II 
shows the observed spacings for various values 
of n. Diffraction patterns with higher values of II 
were observed but these were accompanied by 

streaking so that accurate spacings could not be 
obtained. 

No streaking of the superlattice in other 
directions was observed in any specimen. It was 
always found that the [ilO] was divided into 
three, [ZIO] into four and the [310] into five equal 
parts (Fig. 7a, b), as required by a superlattice 
along [ZlO]. 

All the above facts point to the existence of a 
series of ordered phases based on the (210) fault 
described earlier. These boundaries are aligned 
and regularly recurrent, thus defining the 
individual members of a homologous series. The 
analogy with the homologous shear structure 
oxides is close. 

Discussion 

The observations reported above show clearly 
the existence of a new type of planar boundary 
occurring in rutile structures, defined by the 
fault plane (210) and, perhaps with less certainty, 
by the displacement vector +(O,b,O). As with the 
crystallographic shear planes, this constitutes an 

FIG. 5. Direct lattice images of variables spacing in fringes in material containing -12% GaOl.s. 
8 
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FIG. 6. Dark field lattice images from Ga4Ti13032 showing regions of well ordered material. 

extended defect in rutile solid solutions and a 
means of generating a homologous series of 
compounds. The structure we propose for this 
fault is given in Fig. 8 and corresponds to an 
unaltered oxygen lattice with the displacement 
applied to the metal lattice only, so that the filled 
octahedra are now face sharing along the fault 
plane. The displacement vector assigned does not 
correspond to any mechanism for the formation 
of the fault, but indicates the relationship between 
the atomic positions on either side of the fault. 

TABLE II 

FAULT SPACIKG FOR NUMBERS OF THE 

HOMOLOGOUS SERIES Ga,Ti.-,Oz,-, 

D Km - 1)/2ld,lO 
Cm - IN2 (nm) (nm) 

___~. 

7 1.46 0.03 1.44 
8 1.67 0.03 1.64 
9 1.87 0.03 1.85 

10 2.09 0.03 2.05 
11 2.25 0.03 2.26 

2.27 0.05 

By considering the stacking sequence of (210) 
planes on either side of the fault, it will be seen 
that the number of metal atoms is doubled along 
the fault plane. In the idealized structure the 
stacking would be as follows: 

M, 02, M 02, M, 02.. . M, 02, Ml, 02, M 02. 
The fault corresponds to a lamella of structure 
with the formula M305. 

This faulting therefore leads to a new manner 
in which rutile can assimilate a deficiency of 
oxygen without any defects of local order. The 
planar boundary is not readily described in 
crystallographic terms. It is not exactly a shear 
plane of the kind envisaged by Wadsley, since it 
cannot be derived from the rutile structure by a 
nonconservative shear. It will be noted that the 
displacement of cations from “normal” to 
octahedral “interstitial” sites at the same level 
reverses the obliquity of the ribbons of edge 
sharing octahedra running along the c axis, so 
that in each lamella enclosed between successive 
fault planes they are in a mirror image relation 
to those of adjacent lamellae. (210) is not a twin 
plane for rutile; the reversal of sense is non- 
conservative. There is a structural similarity to 
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FI G. 7. Diffraction patterns from ordered material showing (a) the [llO] divided into three and (b) the [310] di\ 
into five equal parts by superlattice spots. 

ded 
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FIG. 8. Atomic positions in the idealized structure across a (210) boundary. 

(121) crystallographic shear in that, at any one 
level, the arrangement of face sharing octahedra 
at the fault plane is identical; in the proposed 
(210) boundary, however, ribbons of face-sharing 
octahedra run parallel to [OOI] rutile: In one 
sense, the (210) fault could be considered as 
arising from (121) shear operating alternately on 
(12i) and (121) at each successive layer. This may 
be significant, but the similarity must not be 
pressed too far. Nevertheless, both types of fault 
correspond to modes of lowering the oxygen: 
metal ratio by forming boundaries across which 
“normal” and “interstitial” cation sites inter- 
change their meaning. 

This type of boundary cannot be formed by 
the vacancy loop mechanism put forward by 
Anderson and Hyde (26), since this includes a 
shear process in forming the collapsed vacancy 
disc. However, the mechanism of Andersson 
and Wadsley (17) is pertinent, since it involves a 
jump of titanium atoms, in either the [loo] or 
the [OIO] direction, into vacant interstitial 
positions. It will be noted that such a process is 
suggested by the calculated displacement vector 
of +(O, 1,O). Unfortunately, it is not possible, in 
synthesizing ternary compounds, to observe the 
formation and growth of the faults, as Anderson 
and Tilley (5) could in reduced rutile. 

Regularly recurrent boundaries generate a 
new series of ordered phases Ga4Tim-402m-2 in 
the gallium oxide-titanium oxide system, based 
on the rutile unit cell as a subcell. Only those 
members with odd values of m can exist, and 
these are generated by boundaries of the type 
shown at every (m - 1)/2 (210) planes. Calculated 
values of [(m - 1)/2]d,,, are compared with the 

observed spacings in Table II. The unit cell 
proposed for these compounds can be defined as 
follows, where the subscript r denotes the rutile 
axes. 

m-l 
For 2 even 

a = c, 
b=-a,+2b, 

(m-3) c = ~ a, + b, + 42 
4 

m-l 
For 2 odd 

a = c, 
b = -a, + 2b, 

Cm- 1) c = ~ a, + 42. 
4 

Indices of planes can be converted from rutile 
to the new unit cell by means of the transforma- 
tion matrices 

rutile 

0 0 1 

-1 20 

r 

m-3 
4 

1 3 

rutile 

0 0 1 

1 
-1 20 

m-l 0 3 
Y 4 

m-l 
for 2 even 

m-l 
for 2 odd 
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Solving for a,, b,, and c, when (m - 1)/2 is even 

a, = - 
2a 2b + 4c __-~ - 

m-l m-l m-l 

br=-A+ 
(m-3)b 2c 
2(m- l)+m- 1 

c, = a 
m-l. when __ 

2 
1s odd 

2a 4c 
a, = - -++ m-l m-l 

b 2c b,=-a ~ ___ 
m-1+2(m-l)+m-1 

c, = a. 

These equations lead to the inverse matrices for 
converting atomic positions based on the rutile 
cell to those on the new unit cell. 

m-l 
For T even 

I -2 -2 4 ).__ -__ __ 
m-l m - 1 m-l 

iL (m-3) 2 

rutile m-l 2(m-1) m-l 

1 1 0 0 
--f 

i-2 0 4 
h- 1 m-l 

-1 1 2 
em-1 2(m-1) m-l 

rutile 1 1 0 0 

The relationship between the unit cell for 
(m - I)/2 = 10 and rutile containing regular (210) 
planar boundaries is shown in Fig. 9. 

Several preparative methods have been un- 
successfully tried in order to produce homo- 
geneous single crystals for crystal structure 
determinations. Chemical vapour transport, 
with TeCI, as transport agent, does produce small 
crystals, but it will be necessary to establish that 
these are completely homogeneous before a 
structure determination can be made. The 
structure proposed is therefore based only on the 
electron diffraction data, cell dimensions and 
structural principles applicable to the assigned 
displacement vector. 

These observations explain the puzzling phase 

FIG. 9. The unit cell of Ga4Ti17040 related to the 
ordering of (210) faults. 

Xobserved by Lejus et al. The forces of ordering 
in these phases are apparently not as great as 
those observed in the reduced rutile system even 
at high gallium content; this is probably why it 
has proved difficult to grow single crystals. The 
disorder is brought out by direct lattice imaging, 
which shows that not only does the spacing vary 
slightly from fringe to fringe, but it is also possible 
to observe isolated spacings as large as 5 nm in 
material with low gallium content. The lower 
limit of the phase range, as given by Lejus, can 
be ignored since undoubtedly there is a gradual 
transition from isolated (210) faults towards 
ordering. 

At high gallium content there is much better 
ordering, and regularly spaced fringes are 
observed over quite large areas. The highest 
member of the series observed at 1570°K was 
m = 15, as against m = 11 estimated from the 
Lejus phase diagram. However, a sample 
annealed at 1370°K showed a mixture of nz = 19 
and 21, in agreement with Lejus. 

Two points concerning the electron diffraction 
patterns must be discussed. Firstly, we have 
identified each phase by the number of (210) 
planes between each fault, which is given by 
counting the number of superlattice spots between 
the undiffracted beam and the first strong reflec- 
tion. Figure 10a shows a ten times superlattice 
where m = 21. However, on the first layer line 
there are 21 spots between the two strong 
reflections and no single strong spot occurs 
between them. Figure 10b shows this schemati- 
cally and the superlattice reflections have been 
indexed. The position of the disallowed 001 rutile 
reflection lies at 1, 0, 4 as calculated from the 



GIBB AND ANDERSON 

FIG. 10. (a) Diffraction pattern from material in which (m - 1)/2 = IO. 
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FIG. 10. (b) Schematic representation of the diffraction 
pattern assuming a slight expansion at the fault plane. 

transformation matrix, between the 100 and 101 
superlattice spots. If we now assume that the 
(001) spacing of the superstructure is slightly 
larger than 10 times d2io, as would be expected if 
a slight expansion occurs at the fault plane 
compared with that predicted by the displace- 
ment vector, then the 210 rutile reflection 
(marked by a cross) does not coincide with the 
0, 0, ib spot. However, the intensity of the 
0, 0, iO reflection is increased by its close proxi- 
mity. When the second layer line reflections are 
drawn and the rutile reflections added, additional 
intensity will occur for the 1, 0, ib and 1, 0, ii 
reflections, and there are 21 superlattice spots 
between these two intense reflections. We 
should, therefore, predict that for an (m - 1)/2 
times superlattice the interplanar spacing derived 
from the diffraction pattern would be larger than 
that calculated from the simple formula 
[(m - 1)/2] d2 io. Table II shows this to be correct. 
Experimental errors in measuring the super- 
lattice spacing prevent us from determining the 
expansion at the fault, but this is probably small, 
since isolated faults do not deviate significantly 
from the contrast predicted for a displacement 
vector of $(OlO>. 
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FIG. 11. Rutile 001 reciprocal lattice section. 

A second observation meriting comment is 
that, for all phases, superlattice spots occur along 
the [ilO], [TlO], and [310] directions, dividing 
these into 3,4 and 5 equal distances respectively. 
By using the transformation matrices it may be 
seen that these rutile planes do not necessarily 
correspond directly to low index planes in the 
superstructure cell. Figure 11 shows a section of 
the rutile 001 reciprocal lattice plane, with 
the [210] superlattice direction marked by 
diagonal lines. [ilO] cuts these superlattice 
directions twice [ZlO] three times and [310] four 
times. Superlattice spots will thus appear at 
Q[ilO] etc. providing superlattice points occur at 
the intersections of these lines in reciprocal space. 
Even though superlattice points may not occur 
at these intersections, there are two ways in which 
diffraction spots can be observed. Firstly the 
superlattice is often highly streaked due to the 
disorder in fault plane spacing. If such a streaking 
is intersected, a superlattice spot will be observed. 
The second, and probably the more important 
effect is that, for a thin crystal, reciprocal lattice 
points become spikes in a direction normal to the 
crystal face. For a thin crystal lying normal to the 
beam, these spikes will also be normal to the 
Ewald sphere, and points slightly below and 
above the Ewald sphere will show up on the 

diffraction pattern even though they do not lie 
exactly on the reciprocal lattice section. 

It is clear from this work that different cations, 
of similar charge and ionic radius, as dopants 
or as significant ternary components, can 
exercise quite different influences on the defect 
structure of rutile. There is, as yet, too little 
evidence to advance any interpretation of this 
specificity. 
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